TX0150047 CITY OF CONVERSE

TX0940096 CANYON REGIONAL WATER AUTHORITY – LAKE WELLS RANCH

Annual Water Quality Report for the period of January 1 to December 31, 2017

This report is intended to provide you with important information about your drinking water and the efforts made by the water system to provide safe drinking water.

Este reporte incluye información importante sobre el agua para tomar. Para asistencia en español, favor de llamar al telefono (210) 658-3453.

City of Converse is Ground Water

CRWA Lake Wells Ranch WTP is Ground Water

Special Notice: Required language for ALL community public water supplies

You may be more vulnerable than the general population to certain microbial contaminants, such as Cryptosporidium, in drinking water. Infants, some elderly, or immune compromised persons such as those undergoing chemotherapy for cancer; persons who have undergone organ transplants; those who are undergoing treatment with steroids; and people with HIV/AIDS or other immune system disorders, can be particularly at risk from infections. You should seek advice about drinking water from your physician or health care providers. Additional guidelines on appropriate means to lessen the risk of infection by Cryptosporidium are available from the Safe Drinking Water Hotline (800-426-4791).

Water Sources

The sources of drinking water (both tap water and bottled water) include rivers, lakes, streams, ponds, reservoirs, springs, and wells. As water travels over the surface of the land or through the ground, it dissolves naturally-occurring minerals and, in some cases, radioactive material, and can pickup substances resulting from the presence of animals or from human activity. Contaminants that may be present in source water include:

- Microbial contaminants, such as viruses and bacteria, which may come from sewage treatment plants, septic systems, agricultural livestock operations, and wildlife.
- Inorganic contaminants, such as salts and metals, which can be naturally-occurring or result from urban storm water runoff, industrial or domestic wastewater discharges, oil and gas production, mining, or farming.
- Pesticides and herbicides, which may come from a variety of sources such as agriculture, urban storm water runoff, and residential uses.
- Organic chemical contaminants, including synthetic and volatile organic chemicals, which are by-products of industrial processes and petroleum production, and can also come from gas stations, urban storm water runoff, and septic systems.
- Radioactive contaminants, which can be naturally-occurring or be the result of oil and gas production and mining activities.

For more information regarding this report contact:

Name	Ci	ty of Converse	
		-	

Phone _____(210) 658-3453_____

Public Participation Opportunities:

To learn about future public meetings concerning your drinking water or to request a meeting, please call us.

Date: Monday – Friday Time 8:00 a.m. to 5:00 p.m. Location: 9239 Converse Business Lane Phone Number: 210-658-3453

Where do we get our drinking water?

Our drinking water is obtained from multiple water sources: The City of Converse wells pump directly from the EDWARDS Aquifer. Additional sources received are from the Canyon Regional Water Authority (CRWA) ground water from Wells Ranch. A Source Water Susceptibility Assessment for your drinking water source(s) is currently being updated by the Texas Commission on Environmental Quality. This information describes the susceptibility and types of constituents that may come into contact with your drinking water source based on human activities and natural conditions. The information contained in the assessment allows us to focus source water protection strategies. For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: http://www.tceq.texas.gov/gis/swaview

The TCEQ completed an assessment of your source water and results indicate that some of your sources are susceptible to certain contaminants. The sampling requirements for your water system are based on this susceptibility and previous sample data. Any detection of these contaminants may be found in this Consumer Confident Report. For more information on source water assessments and protection efforts at our system, please contact Jonathan Smith, Deputy Director of Public Works at (210) 658-3453. Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: http://dww2.tceq.texas.gov/DWW/

ALL drinking water may contain contaminants:

Drinking water, including bottled water, may reasonably be expected to contain at least small amounts of some contaminants. The presence of contaminants does not necessarily indicate that water poses a health risk. More information about contaminants and potential health effects can be obtained by calling the EPAs Safe Drinking Water Hotline at (800) 426-4791.

Secondary Constituents:

In order to ensure that tap water is safe to drink, EPA prescribes regulations which limit the amount of certain contaminants in water provided by public water systems. FDA regulations establish limits for contaminants in bottled water which must provide the same protection for public health. Contaminants may be found in drinking water that may cause taste, color, or odor problems. The taste and order constituents are called secondary constituents and are regulated by the State of Texas, not the EPA. These types of problems are not necessarily causes for health concerns. Therefore, secondary's are not required to be reported in this document but they may greatly affect the appearance and taste of your water. For more information on taste, odor, or color of drinking water, please contact the system's business office.

Information about Source Water Assessments

For more information about your sources of water, please refer to the Source Water Assessment Viewer available at the following URL: <u>http://www.tceq.texas.gov/gis/swaview</u>

Further details about sources and source-water assessments are available in Drinking Water Watch at the following URL: <u>http://dww2.tceq.texas.gov/DWW/</u>

Source Water Name	Type of Water	Report Status	Location
TX0150047 CITY OF CONVERSE Pages			
Bob Grubb	GW	Y	
Gibbs Sprawl Rd	GW		
N Cimarron 2	GW	Y	
Source Water Name	Type of Water	Report Status	Location
TX0940096 CRWA – LAKE WELLS RANCH			
1 – TOMMY'S WELL	GW		
11 - COASTAL FIELD	GW		
12 – BULL TRAP	GW		
2 – DEER STAND	GW		
4 – PIG TRAP	GW		
7 – DEAD MAN	GW		
9 – CAMP HOUSE	GW		
8 – CHICKEN HOUSE	GW		
3 – DEER STAND WILCOX	GW		
4 – DEAD MAN TANK WILCOX	GW		

2017 Annual Drinking Water Quality Report

Water Quality Test Results	
Definitions:	The following tables contain scientific terms and measures, some of which may require explanation.
Action Level:	The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system follows.
Action Level Goal (ALG):	The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow a margin of safety.
Avg:	Regulatory compliance with some MCLs are based on running annual average of monthly samples.
Level 1 Assessment:	A Level 1 assessment is a study of the water system to identify potential problems and determine (if possible) why total coliform bacteria have been found in our water system.
Level 2 Assessment:	A Level 2 assessment is a very detailed study of the water system to identify potential problems and determine (if possible) why an E. coli MCL violation has occurred and/or why total coliform bacteria have been found in our water system on multiple occasions.
Maximum Contaminant Level or MCL:	The highest level of a contaminant that is allowed in drinking water. MCLs are set as close to the MCLGs as feasible using the best available treatment technology.
Maximum Contaminant Level Goal or MCLG:	The level of a contaminant in drinking water below which there is no known or expected risk to health. MCLGs allow for a margin of safety.
Maximum residual disinfectant level or MRDL:	The highest level of a disinfectant allowed in drinking water. There is convincing evidence that addition of a disinfectant is necessary for control of microbial contaminants.
Maximum residual disinfectant level goal or MRDLG:	The level of a drinking water disinfectant below which there is no known or expected risk to health. MRDLGs do not reflect the benefits of the use of disinfectants to control microbial contaminants.
MFL	million fibers per liter (a measure of asbestos)
mrem:	millirems per year (a measure of radiation absorbed by the body)
Na:	not applicable.
NTU	nephelometric turbidity units (a measure of turbidity)
pCi/L	picocuries per liter (a measure of radioactivity)
ppb:	micrograms per liter or parts per billion - or one ounce in 7,350,000 gallons of water.
ppm:	milligrams per liter or parts per million - or one ounce in 7,350 gallons of water.

ppt

ppq

parts per quadrillion, or picograms per liter (pg/L)

TX0150047 City of Converse

Regulated Contaminants Detected

Coliform Bacteria

Maximum Contaminant Level Goal	Total Coliform Maximum Contaminant Level	Highest No. of Positive	Fecal Coliform or E. Coli Maximum Contaminant Level	Total No. of Positive E. Coli or Fecal Coliform Samples	Violation	Likely Source of Contamination
0	1 positive monthly sample.	1		0	Ν	Naturally present in the environment.

Required Additional Health Information for Lead

If present, elevated levels of lead can cause serious health problems, especially for pregnant women and young children. Lead in drinking water is primarily from materials and components associated with service lines and home plumbing. The water supply is responsible for providing high quality drinking water, but cannot control the variety of materials used in plumbing components. When your water has been sitting for several hours, you can minimize the potential for lead exposure by flushing your tap for 30 seconds to 2 minutes before using water for drinking or cooking. If you are concerned about lead in your water, you may wish to have your water tested. Information on lead in drinking water, testing methods, and steps you can take to minimize exposure is available from the Safe Drinking Water Hotline or at http://www.epa.gov/safewater/lead

Lead and Copper

Definitions:

Action Level Goal (ALG): The level of a contaminant in drinking water below which there is no known or expected risk to health. ALGs allow for a margin of safety. Action Level: The concentration of a contaminant which, if exceeded, triggers treatment or other requirements which a water system must follow.

Lead and Copper	Date Sampled	MCLG	Action Level (AL)	90th Percentile	# Sites Over AL	Units	Violation	Likely Source of Contamination
Copper	7/15/2016	1.3	1.3	0.132	0	ppm	N	Erosion of natural deposits; Leaching from wood preservatives; Corrosion of household plumbing systems.

Lead	7/15/2016	0	15	1.6	0	ppb	N	Corrosion of household plumbing systems; Erosion of natural deposits.

• Lead and Copper Rule Testing

The 1994 Federal Lead & Copper Rule mandates a household testing program for these substances. According to the rule, 90% of samples from high-risk homes must have levels less than 0.015 milligrams per liter for lead and 1.3 milligrams per liter for copper.

Maximum Residual Disinfectant Level

Disinfectant	Year	Average Level	Minimum Level	Maximum Level	MRDL	MRDLG	Unit	Violation (Y/N)	Source of Disinfectant
Chlorine Residual	2015	1.11	0.79	1.43	4	4	ppm	Ŷ	Disinfectant used to control microbes
Disinfectants and Disinfection By- Products	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Ur	nits	Violation	Likely Source of Contamination
Haloacetic Acids (HAA5)*	2017	3	0 – 1.8	No goal for the total	60	р	b	Ν	By-product of drinking water chlorination.
Total Trihalomethanes (TThm) *	2017	21	0 -21.1	No goal for the total	80	р	dc	N	By-product of drinking water chlorination

Not all sample results may have been used for calculating the Highest Level Detected because some results may be part of an evaluation to determine where compliance sampling should occur in the future.

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Individual Samples	MCLG	MCL	Units	Violation	Likely Source of Contamination
Arsenic	06/28/2011	0.711	0.711 – 0.711	n/a	10	ppb	N	Erosion of natural deposits; Runoff from orchards; Runoff from glass and electronics production wastes.
Barium	2017	0.136	0.125 – 0.136	2	2	ppm	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Chromium	6/28/2011	2.36	2.36 – 2.36	100	100	ppb	Ν	Discharge from steel and pulp mills; Erosion of natural deposits.
Fluoride	2017	1.36	0.125 – 0.136	4	4.0	ppm	N	Erosion of natural deposits; Water additive which promotes strong teeth; Discharge from fertilizer and aluminum.

Nitrate (measured as Nitrogen)	2017	2	0.11 – 1.63	10	10	ppm	N	Runoff from fertilizer use; Leaching from septic tanks, sewage; Erosion of natural deposits.

Nitrate Advisory – Nitrate in drinking water at levels about 10 ppm is a health risk for infants of less than six months of age. High nitrate levels in drinking water can cause blue baby syndrome. Nitrate levels may rise quickly for short periods of time because of rainfall or agricultural activity. If you are caring for an infant you should ask advice from your health care provider.

Selenium	6/28/2011	0.595	0.595 – 0.595	50	50	ppb	N	Discharge from petroleum and metal refineries; Erosion of natural deposits; Discharge from mines.
Thallium	6/28/2011	0.131	0.131-0.131	0.5	2	ppb	N	Discharge from electronics, glass, Leaching from ore-processing sites, drug factories.
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Combined Radium 226/228	2017	1.06	0 – 1.06	0	5	pCi/L	N	Erosion of natural deposits.
Gross alpha excluding radon and uranium	2017	5.8	4 - 5.8	0	15	pCi/L	N	Erosion of natural deposits.
Uranium	2017	1.3	0 – 1.3	0	30	ug/l	N	Erosion of natural deposits.

Violations Table

City of Converse Water did not receive violations for the year 2017.								
Violation Type Violation Begin Violation End Violation Explanation								
N/A	01/01/2017	03/31/2017	N/A					

TX0940096 CRWA WELLS RANCH WTP

Microbiological Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Total Coliform Bacteria	2017	Absent	Absent or Present	0	MCL: (systems that collect 40 or more samples per month) 5% of monthly samples are positive. (Systems that collect <40 samples/mo nth-1positive monthly sample.	N/A	Ν	Naturally present in the environment.
Fecal coliform and <i>E.coli</i>	2017	Absent	Absent or Present	0	0	N/A	N	Human and animal fecal waste
TOC	2017	0	N/A	N/A	TT	Mg/L	N	Naturally present in the environment.
Turbidity	2017	N/A	NA/	N/A	TT	NTU	N	Soil runoff, Bacteria, organic material, suspended particles
Radioactive Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Beta/Photon emitters	2012	4.6	0-50	0	50	pCi/L	N	Decay of natural and man-made deposits
Alpha emitters	2012	0	0-15	0	No MCL	pCi/L	N	Erosion of natural deposits
Combined radium (-226 & 228)	2012	1	0-5	0	5	pCi/L	Ν	Erosion of natural deposits

Inorganic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Antimony	2016	0	0-6	6	6	Ppb	N	Discharge from petroleum refineries, fire retardants, ceramics, electronics, solder
Arsenic	2016	0	0-10	N/A	10	Ppb	N	Erosion of natural deposits; runoff from orchards; runoff from glass and electronics production wastes.
Asbestos	2015	0	0-7	7	7	MFL	N	Decay of asbestos cement water mains; erosion of natural deposits
Barium	2016	0.103	0-2	2	2	Mg/L	N	Discharge of drilling wastes; Discharge from metal refineries; Erosion of natural deposits.
Beryllium	2016	0	0-4	4	4	Ppb	N	Discharge from metal refineries and coal burning factories; discharge from electrical aerospace and defense industries
Cadmium	2016	0	0-5	5	5	Ppb	N	Corrosion of galvanized pipes; erosion of natural deposits; discharge from metal refineries; runoff from waste batteries and paints
Chromium	2016	0	0-100	100	100	Ppb	N	Discharge from steel and pulp mills; erosion of natural deposits
Copper	2016	0.330	0-1.3	1.3	AL=1.3	Ppm	N	Corrosion of household plumbing systems; erosion of natural deposits; leaching from wood preservatives
Cyanide	2017	0	0-200	200	200	Ppm	N	Discharge from steel/metal factories; discharge from plastic and fertilizer factories
Fluoride	2016	0	0-4	4	4	Ppm	N	Erosion of natural deposits; water additive which promotes strong teeth; discharge from fertilizer and aluminum factories
Lead	2016	0	0-15	0	AL=15	Ppb	N	Corrosion of household plumbing systems, erosion of natural deposits

Mercury (inorganic)	2016	0	0-2	2	2	Ppb	N	Erosion of natural deposits; discharge from refineries and factories; runoff from landfills; runoff from cropland
Nitrate (as Nitrogen)	2017	0	0-10	10	10	Ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Nitrite (as Nitrogen)	2015	0	0-1	1	1	Ppm	N	Runoff from fertilizer use; leaching from septic tanks, sewage; erosion of natural deposits
Selenium	2016	0	0-50	50	50	Ppm	N	Discharge from petroleum and metal refineries; erosion of natural deposits; discharge from mines
Thallium	2016	0	0.5-2	0.5	2	Ppb	N	Leaching from ore-processing sites; discharge from electronics, glass and drug factories
Synthetic Organic Contaminants Including Pesticides and Herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
2. 4, -D	2016	0	0-70	70	70	Ppb	N	Runoff from herbicide used on row crops
2, 4, 5-TP (Silvex)	2016	0	0-50	50	50	Ppb	N	Residue of banned herbicide
Acrylamide	2017	0	0-10	0	TT	Ppb	N	Added to water during sewage/wastewater treatment
Alachlor	2016	0	0-2	0	2	Ppb	N	Runoff from herbicide used on row crops
Atrazine	2016	0	0-3	3	3	Ppb	N	Runoff from herbicide used on row crops
Benzo(a)pyrene (PAH)	2016	0	0-200	0	200	Nanog- rams/L	N	Leaching from linings of water storage tanks and distribution lines
Carbofuran	2016	0	0-40	40	40	Ppb	N	Leaching of soil fumigant used on rice and alfalfa
Chlordane	2016	0	0-2	0	2	Ppb	N	Residue of banned termiticide
Dalapon	2016	0	0-200	200	200	Ppb	N	Runoff from herbicide used on the rights of way
Di(2-ethylhexyl) adipate	2016	0	0-400	400	400	Ppb	N	Discharge from chemical factories
Di(2-ethylhexyl) phthalate	2016	0	0-6	0	6	Ppb	N	Discharge from rubber and chemical factories.

Dinoseb	2016	0	0-7	7	7	Ppb	N	Runoff from herbicide used on soybeans and vegetables
Diquat	N/A	N/A	N/A	20	20	Ppb	N/A	Runoff from herbicide use
Synthetic Organic Contaminants Including Pesticides and Herbicides	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Dioxin[2,3,7,8- TCDD]	N/A	N/A	N/A	0	30	Picograms/L	N/A	Emissions from waste incineration and other combustion; discharge from chemical factories
Dibromochlor- opropane	2017	0	0-200	0	200	Nanograms/L	N	Runoff/leaching from soil fumigant used on soybeans, cotton, pineapples and orchards
Endothall	N/A	N/A	N/A	100	100	Ppb	N/A	Runoff from herbicide use
Endrin	2016	0	0-2	2	2	Ppb	Ν	Residue of banned insecticide
Epichlorohydrin	N/A	N/A	N/A	0	TT	N/A	N/A	Discharge from industrial chemical factories; an impurity of some water treatment chemicals
Ethylene dibromide	2016	0	0-50	0	50	Nanograms/L	N	Discharge from petroleum refineries
Glyphosate	N/A	N/A	N/A	700	700	Ppb	N/A	Runoff from herbicide use
Heptachlor	2016	0	0-400	0	400	Nanograms/L	Ν	Residue from banned termiticide
Heptachlor epoxide	2016	0	0-200	0	200	Nanograms/L	Ν	Breakdown of heptachlor
Hexachloroben- zene	2016	0	0-1	0	1	Ppb	N	Discharge from metal refineries and agricultural chemical factories
Hexachlorocycl- opentadiene	2016	0	0-50	50	50	Ppb	N	Discharge from chemical factories
Lindane	N/A	N/A	N/A	200	200	Nanograms/L	N/A	Runoff/leaching from insecticide used on cattle, lumber, gardens
Methoxychlor	2016	0	0-40	40	40	Ppb	N	Runoff/leaching from insecticides used on fruits, vegetables, alfalfa, livestock
Oxamyl [Vydate]	2016	0	0-200	200	200	Ppb	Ν	Runoff from landfills of waste chemicals
PCBs [Polychlorinated biphenyls]	N/A	N/A	N/A	0	500	Nanograms/L	N/A	Runoff from landfills; discharge of waste chemicals
Pentachlorophe-nol	2016	0	0-1	0	1	Ppb	N	Discharge from wood preserving factories

Picloram	2016	0	0-500	500	500	Ppb	N	Herbicide runoff
Simazine	2016	0	0-4	4	4	Ppb	N	Herbicide runoff
Toxaphene	2016	0	0-3	0	3	Ppb	N	Runoff/leaching from insecticide used on cotton and cattle
Volatile Organic Contaminants	Collection Date	Highest Level Detected	Range of Levels Detected	MCLG	MCL	Units	Violation	Likely Source of Contamination
Benzene	2017	0	0-5	0	5	Ppb	N	Discharge from factories; leaching from gas storage tanks and landfills
Bromate	2016	0	0-10	0	10	Ppb		By-product of drinking water chlorination
Carbon Tetrachloride	2017	0	0-5	0	5	Ppb	N	Discharge from chemical plants and other industrial activities
Chloramines	2016	N/A	0-4	MRDLG = 4	MRDL = 4	Ppm	N	Water additive used to control microbes
Chlorine	2017	1.61	0-4	MRDLG = 4	MRDL = 4	Ppm	N	Water additive used to control microbes
Chlorite	2016	0	0.0-1.0	0.8	1.0	Ppm	N	By-product of drinking water chlorination
Chlorine Dioxide		0	0-800	MRDLG = 800	MRDL = 800	Ppb	N	Water additive used to control microbes
Chlorobenzene	2017	0	0-100	100	100	Ppb	N	Discharge from chemical and agricultural chemical factories
o-Dichlorobenzene	2017	0	0-600	600	600	Ppb	N	Discharge from industrial chemical factories
p-Dichlorobenzene	2017	0	0-75	75	75	Ppb	N	Discharge from industrial chemical factories
1,2-Dichloroethene	2017	0	0-5	0	5	Ppb	N	Discharge from industrial chemical factories
1,1- Dichloroethylene	2017	0	0-7	7	7	Ppb	N	Discharge from industrial chemical factories
Cis-1,2- Dichloroethylene	2017	0	0-70	70	70	Ppb	N	Discharge from industrial chemical factories

Trans-1,2- Dichloroethylene	2017	0	0-100	100	100	Ppb	N	Discharge from industrial chemical factories
Dichloromethane	2017	0	0-5	0	5	Ppb	N	Discharge from pharmaceutical and chemical factories
1,2 Dichloropropane	2017	0	0-5	0	5	Ppb	N	Discharge from industrial chemical factories
Ethylbenzene	2017	0	0-700	700	700	Ppb	N	Discharge from petroleum refineries
Haloacetic Acids (HAA)	2017	0	0-60	N/A	60	Ppb	N	By-product of disinfection
Styrene	2017	0	0-100	100	100	Ppb	N	Discharge from rubber and plastic factories; leaching from landfills
Tetrachloroethylene	2017	0	0-5	0	5	Ppb	N	Leaching from PVC pipes; discharge from factories and dry cleaners
1,2,4- Trichlorobenzene	2017	0	0-70	70	70	Ppb	N	Discharge from textile-finishing factories
1,1,1- Trichloroethane	2017	0	0-200	200	200	Ppb	N	Discharge from metal degreasing sites and other factories
1,1,2- Trichloroethane	2017	0	0-5	3	5	Ppb	N	Discharge from industrial chemical factories
Trichloroethylene	2017	0	0-5	0	5	Ppb	N	Discharge from metal degreasing sites and other factories
TTHM [Total trihalomethanes]	2016	81.6	0-100	0	100/80	Ppb	N	By-product of drinking water chlorination
Toluene	2017	0	0-1	1	1	Ppm	N	Discharge from petroleum factories
Vinyl Chloride	2017	0	0-2	0	2	Ppb	N	Leaching from PVC piping; discharge from plastics factories
Xylenes	2017	0	0-10	10	10	Ppm	N	Discharge from petroleum factories; discharge from chemical factories

*EPA considers 50 pCi/L to be the level of concern for beta particles.

Interim Enhanced SWTR								
The interim Enhanced Surface Water Treatment Rule improves control of microbial contaminants, particularly Cryptosporidium, in systems using surface water, or ground water under the direct influence of surface water. The rule builds upon the treatment technique requirements of the Surface Water Treatment Rule.								
Violation Type	Violation Begin	Violation End	Violation Explanation					
MONITORING, ROUTINE (IESWTR/LT1) MAJOR	N/A	N/A	N/A					